ARTIFICIAL INTELLIGENCE AS A MEANS TO ENHANCE SPEAKING COMPETENCE: PEDAGOGICAL OR TREND?

Authors

  • Maria Asumpta Deny Kusumaningrum Institut Teknologi Dirgantara Adisutjipto
  • Christina Atika Yulina Universitas Katolik Widya Mandala Surabaya

DOI:

https://doi.org/10.51878/edutech.v6i1.9156

Keywords:

Artificial Intelligence, Aviation English, Speaking Skills

Abstract

ABSTRACT

Oral proficiency in Aviation English is essential for operational safety; however, speaking instruction in aviation programs is often constrained by limited time, large classes, and learner anxiety, resulting in reduced opportunities for practice and feedback. This study examined the role of Artificial Intelligence (AI) as a pedagogical solution to enhance Aviation English speaking skills. Employing a mixed-methods quasi-experimental pretest–posttest control group design, the study involved first-semester students of the Aerospace Engineering Study Program at Institut Teknologi Dirgantara Adisutjipto enrolled in Bahasa Inggris Teknik I. A total of 90 students were assigned to an experimental group (n = 49) and a control group (n = 41). Both groups received identical classroom instruction; however, the experimental group practiced scenario-based aviation dialogues using AI with automatic speech recognition and immediate feedback, while the control group engaged in conventional role-plays. Data were collected through speaking performance tests, perception questionnaires, AI learning logs, and semi-structured interviews. Results indicated equivalent baseline proficiency, but significantly greater speaking gains in the experimental group (M = +9.6 vs. +3.4; p < .001; d = 0.85), particularly in pronunciation and fluency. These findings confirm that AI-assisted practice effectively enhances Aviation English speaking when integrated with authentic tasks and guided instructor support.

ABSTRAK

Kemahiran lisan dalam Bahasa Inggris Penerbangan sangat penting bagi keselamatan operasional, tetapi pembelajaran berbicara dalam program penerbangan sering terkendala keterbatasan waktu, kelas besar, dan kecemasan belajar, sehingga kesempatan praktik dan umpan balik menjadi terbatas. Penelitian ini mengkaji peran Kecerdasan Buatan (Artificial Intelligence / AI) sebagai solusi pedagogis untuk meningkatkan kemampuan berbicara Bahasa Inggris Penerbangan. Penelitian menggunakan metode campuran dengan desain kuasi-eksperimen pretest–posttest control group dan melibatkan mahasiswa semester pertama Program Studi Teknik Dirgantara Institut Teknologi Dirgantara Adisutjipto yang mengikuti mata kuliah Bahasa Inggris Teknik I. Sebanyak 90 mahasiswa dibagi ke dalam kelompok eksperimen (n = 49) dan kelompok kontrol (n = 41). Kedua kelompok memperoleh pembelajaran yang sama; namun, kelompok eksperimen berlatih dialog penerbangan berbasis skenario menggunakan AI dengan pengenalan ujaran otomatis dan umpan balik langsung, sedangkan kelompok kontrol melakukan role-play konvensional. Data dikumpulkan melalui tes kinerja berbicara, kuesioner persepsi, log pembelajaran AI, dan wawancara semi-terstruktur. Hasil menunjukkan kemampuan awal yang setara, tetapi peningkatan kemampuan berbicara kelompok eksperimen secara signifikan lebih tinggi (M = +9,6 vs. +3,4; p < 0,001; d = 0,85), khususnya pada aspek pelafalan dan kefasihan. Temuan ini menegaskan bahwa praktik berbantuan AI efektif meningkatkan kemampuan berbicara Bahasa Inggris Penerbangan apabila dipadukan dengan tugas autentik dan bimbingan dosen.

Downloads

Download data is not yet available.

References

Alsager, H. N. (2024). To look from another window in education: Artificial intelligence assisted language learning and its reflections on academic demotivation, foreign language learning anxiety and autonomy. Computer Assisted Language Learning Electronic Journal, 25(4), 124–147. https://callej.org/index.php/journal/article/view/469

Amrate, M., & Tsai, P.-H. (2025). Computer-assisted pronunciation training: A systematic review. ReCALL, 37(1), 22–42. https://doi.org/10.1017/S0958344024000181

Bashori, M., van Hout, R., Strik, H., & Cucchiarini, C. (2021). Effects of ASR-based websites on EFL learners’ vocabulary, speaking anxiety, and language enjoyment. System, 99, 102496. https://doi.org/10.1016/j.system.2021.102496

Bashori, M., van Hout, R., Strik, H., & Cucchiarini, C. (2024). “I can speak”: Improving English pronunciation through automatic speech recognition-based language learning systems. Innovation in Language Learning and Teaching, 18(5), 443–461. https://doi.org/10.1080/17501229.2024.2315101

Botes, E., Dewaele, J.-M., & Greiff, S. (2020). The foreign language classroom anxiety scale and academic achievement: An overview of the prevailing literature and a meta-analysis. Journal for the Psychology of Language Learning, 2(1), 26–56. https://doi.org/10.52598/jpll/2/1/3

Chapelle, C. A., & Sauro, S. (Eds.). (2017). The handbook of technology and second language teaching and learning. Wiley Blackwell.

Demirdöken, G. (2021). The constructivist approach towards identifying the challenges of ESP teachers: The case of Aviation English. International Journal of Aviation, Aeronautics, and Aerospace, 8(2). https://doi.org/10.15394/ijaaa.2021.1571

Demirdöken, G., & Atay, D. (2024). Enhancing aviation English competency: A simulation-based approach for aspiring pilots. English for Specific Purposes, 76, 106–121. https://doi.org/10.1016/j.esp.2024.08.001

Dennis, N. K. (2024). Using AI-powered speech recognition technology to improve English pronunciation and speaking skills. IAFOR Journal of Education, 12(2), 107–126. https://doi.org/10.22492/ije.12.2.05

Dinçer, N., & Demirdöken, G. (2023). Ab-initio pilots’ perspectives on the use of simulation in the aviation English course. Journal of Teaching English for Specific and Academic Purposes, 11(1), 11–22. https://doi.org/10.22190/JTESAP230130003D

Drayton, J., & Coxhead, A. (2023). The development, evaluation and application of an aviation radiotelephony specialised technical vocabulary list. English for Specific Purposes, 69, 51–66. https://doi.org/10.1016/j.esp.2022.10.001

Horwitz, E. K., Horwitz, M. B., & Cope, J. (1986). Foreign language classroom anxiety. The Modern Language Journal, 70(2), 125–132. https://doi.org/10.1111/j.1540-4781.1986.tb05256.x

International Civil Aviation Organization. (2010). Manual on the implementation of ICAO language proficiency requirements (Doc 9835). ICAO.

International Civil Aviation Organization. (2023). Guidance on the harmonized implementation of language proficiency requirements and its oversight (EUR Doc 046, 1st ed.). ICAO EUR/NAT Office.

International Civil Aviation Organization. (2024). Test design guidelines: Handbook on the design of tests for the ICAO language proficiency requirements (Doc 10197, 1st ed.). ICAO.

Kessler, G. (2018). Technology and the future of language teaching. Foreign Language Annals, 51(1), 205–218. https://doi.org/10.1111/flan.12318

Liu, Y., binti Ab Rahman, F., & binti Mohamad Zain, F. (2025). A systematic literature review of research on automatic speech recognition in EFL pronunciation. Cogent Education, 12(1), 2466288. https://doi.org/10.1080/2331186X.2025.2466288

McCrocklin, S. (2016). Pronunciation learner autonomy: The potential of automatic speech recognition. System, 57, 25–42. https://doi.org/10.1016/j.system.2016.01.001

Ngo, T. T.-N., Chen, H. H.-J., & Lai, K. K.-W. (2024). The effectiveness of automatic speech recognition in ESL/EFL pronunciation: A meta-analysis. ReCALL, 36(1), 4–21. https://doi.org/10.1017/S0958344023000113

O’Brien, M. G., Derwing, T. M., Cucchiarini, C., Hardison, D. M., Mixdorff, H., Thomson, R. I., Strik, H., Levis, J. M., Munro, M. J., & Foote, J. A. (2018). Directions for the future of technology in pronunciation research and teaching. Journal of Second Language Pronunciation, 4(2), 182–207. https://doi.org/10.1075/jslp.17001.obr

Ouyang, F., & Jiao, P. (2021). Artificial intelligence in education: The three paradigms. Computers and Education: Artificial Intelligence, 2, 100020. https://doi.org/10.1016/j.caeai.2021.100020

Rahayu, Y. S., Maulida, R. D., & Wintarsih, W. (2025). Integrating the shadowing technique with an AI-powered mobile application to improve students’ pronunciation and speaking fluency. JELT (Jambi-English Language Teaching), 9(2). https://online-journal.unja.ac.id/jelt/article/view/46341

Wang, F., Wang, X., Wang, Y., & Wang, J. (2025). The effects of artificial intelligence-based interactive scaffolding on EFL learners’ speaking learning in interactive learning environments. Interactive Learning Environments. https://doi.org/10.1080/10494820.2025.2470319

Zhai, C., & Wibowo, S. (2023). A systematic review on artificial intelligence dialogue systems for enhancing English as foreign language students’ interactional competence in the university. Computers and Education: Artificial Intelligence, 4, 100134. https://doi.org/10.1016/j.caeai.2023.100134

Downloads

Published

2026-01-30

How to Cite

Kusumaningrum, M. A. D., & Yulina, C. A. (2026). ARTIFICIAL INTELLIGENCE AS A MEANS TO ENHANCE SPEAKING COMPETENCE: PEDAGOGICAL OR TREND?. EDUTECH : Jurnal Inovasi Pendidikan Berbantuan Teknologi, 6(1), 194-205. https://doi.org/10.51878/edutech.v6i1.9156

Issue

Section

Articles