DIGITAL LITERACY AND LEARNING READINESS AS KEY PREDICTORS OF DEEP LEARNING ACHIEVEMENT IN THE CONTEXT OF ARTIFICIAL INTELLIGENCE
DOI:
https://doi.org/10.51878/edutech.v5i4.7972Keywords:
Literasi Digital, Kesiapan Belajar, Deep Learning, Kecerdasan Buatan, Sekolah Menengah AtasAbstract
ABSTRACT
The advancement of digital technology driven by artificial intelligence (AI) requires students to possess adequate levels of digital literacy and learning readiness in order to achieve deep learning. However, the integration of AI into instructional practices in secondary schools has not yet been fully optimized due to variations in students’ digital competencies and learning readiness. This study aims to analyze the extent to which AI-based digital literacy and learning readiness contribute to deep learning achievement among high school students. The research was conducted across eight high schools in Bandar Lampung, involving 100 respondents selected from a population of 133 students. A quantitative survey method was employed using structured questionnaires, and the data were analyzed through multiple linear regression to examine the influence of each variable. The findings reveal that digital literacy exerts a significant influence and serves as the primary factor enhancing students’ abilities to analyze, evaluate, and generate new ideas within an AI-integrated learning environment. In contrast, learning readiness shows a positive yet statistically insignificant contribution. These results highlight that the effectiveness of AI utilization in learning relies more heavily on strengthening students’ digital literacy rather than solely on their readiness to learn. Overall, the study concludes that improving digital literacy is a fundamental requirement for fostering deep learning in the era of intelligent technology. Practically, schools are encouraged to develop digital competency programs and adopt adaptive instructional strategies to ensure that AI integration can operate effectively and deliver optimal benefits for learning quality.
ABSTRAK
Perkembangan teknologi digital berbasis kecerdasan buatan (AI) menuntut siswa untuk memiliki kemampuan literasi digital dan kesiapan belajar yang memadai agar mampu mencapai pembelajaran mendalam (deep learning). Namun, integrasi AI dalam pembelajaran belum sepenuhnya optimal di sekolah menengah karena variasi kompetensi digital dan kesiapan belajar yang berbeda antar siswa. Penelitian ini bertujuan menganalisis sejauh mana literasi digital berbasis AI dan kesiapan belajar berkontribusi terhadap pencapaian deep learning pada siswa SMA. Studi dilakukan pada delapan SMA di Bandar Lampung dengan melibatkan 100 responden yang dipilih dari populasi 133 siswa. Metode survei kuantitatif digunakan melalui penyebaran kuesioner terstruktur, sedangkan analisis data dilakukan menggunakan regresi linear berganda untuk menguji pengaruh masing-masing variabel. Hasil penelitian menunjukkan bahwa literasi digital memberikan pengaruh signifikan dan menjadi faktor utama yang mendorong kemampuan siswa dalam menganalisis, mengevaluasi, serta menghasilkan gagasan baru dalam konteks pembelajaran berbasis AI. Sebaliknya, kesiapan belajar memberikan kontribusi positif tetapi tidak mencapai signifikansi secara statistik. Temuan tersebut menegaskan bahwa efektivitas pemanfaatan AI dalam pembelajaran lebih bertumpu pada penguatan literasi digital siswa dibandingkan sekadar kesiapan belajar mereka. Secara keseluruhan, penelitian ini menyimpulkan bahwa peningkatan kemampuan literasi digital menjadi fondasi penting dalam mendukung pembelajaran mendalam di era teknologi cerdas. Implikasi praktisnya, sekolah perlu merancang program pengembangan kompetensi digital dan strategi pembelajaran yang adaptif agar integrasi AI dapat berjalan efektif serta memberikan dampak optimal bagi kualitas pembelajaran.
Downloads
References
Alanoglu, M., Karabatak, S., & Yang, H. (2025). Alanoglu, M., Karabatak, S., & Yang, H. (2025). Understanding university students’ self-directed online learning in the context of emergency remote teaching: the role of online learning readiness and digital literacy. Journal of Computing in Higher Education, 1-27. https://doi.org/10.1007/s12528-025-09458-0
Alharbi, M. S. (2025). Digital transformation and EFL anxiety: A mixed-methods study on the impact of online learning on the language acquisition psychology of Saudi Arabian students. Social Sciences & Humanities Open, 12, 101721. https://doi.org/10.1016/j.ssaho.2025.101721
Bouzammour, B., Zaz, G., Marktani, M. A., Chougrad, H., Touhafi, A., & Jorio, M. (2025). Ensemble Deep Learning Models for Respiratory Disease Detection using Cough Analysis. Journal of Engineering Research. https://doi.org/10.1016/j.jer.2025.08.017
Broadbent, J., & Poon, W. L. (2015). Self-regulated learning strategies & academic achievement in online higher education learning environments: A systematic review. The internet and higher education, 27, 1-13. https://doi.org/10.1016/j.iheduc.2015.04.007
Cruz-Jesus, F., Castelli, M., Oliveira, T., Mendes, R., Nunes, C., Sa-Velho, M., & Rosa-Louro, A. (2020). Using artificial intelligence methods to assess academic achievement in public high schools of a European Union country. Heliyon, 6(6). https://doi.org/10.1016/j.heliyon.2020.e04081
Czerniewicz, L., Agherdien, N., Badenhorst, J., Belluigi, D., Chambers, T., Chili, M., ... & Wissing, G. (2020). A wake-up call: Equity, inequality and Covid-19 emergency remote teaching and learning. Postdigital science and education, 2(3), 946-967. https://doi.org/10.1007/s42438-020-00187-4
Dakey, L. E., & Akakpo, M. G. (2025). Urgency of digital literacy in translator education–A survey of students in Ghana. Social Sciences & Humanities Open, 12, 101835. https://doi.org/10.1016/j.ssaho.2025.101835
Dasruth, J., Naicker, S. R., & Smith, C. (2024). Teachers' perceptions of principals’ digital leadership practices in a school district in a developing country. Social Sciences & Humanities Open, 10, 101192. https://doi.org/10.1016/j.ssaho.2024.101192
Erawan, P. (2015). Teacher training through school-based program in participatory learning Promotion. Procedia-social and Behavioral Sciences, 177, 162-168. https://doi.org/10.1016/j.sbspro.2015.02.371
Furbani, W., Purnawanti, F., Dewi, A. E. R., Sari, N., & Thoriq, T. (2025). Digital Literacy and Critical Thinking Skills of Students in the Era Industry 4.0. Juwara: Jurnal Wawasan Dan Aksara, 5(1), 136–148. https://doi.org/10.58740/juwara.v5i1.382
Imjai, N., Promma, W., Usman, B., & Aujirapongpan, S. (2024). The intertwined effects of digital literacy, agile mindset on design thinking skill and management control competency: Insights from Thai young accountants. International Journal of Information Management Data Insights, 4(2), 100244. https://doi.org/10.1016/j.jjimei.2024.100244
Joshi, D. R., Khanal, J., Chapai, K. P. S., & Adhikari, K. P. (2025). The impact of digital resource utilization on student learning outcomes and self-efficacy across different economic contexts: A comparative analysis of PISA, 2022. International Journal of Educational Research Open, 8, 100443. https://doi.org/10.1016/j.ijedro.2025.100443
Landa, E., Zhu, C., & Sesabo, J. (2021). Readiness for integration of innovative teaching and learning technologies: An analysis of meso?micro variables in Tanzanian higher education. International Journal of Educational Research Open, 2, 100098. https://doi.org/10.1016/j.ijedro.2021.100098
Lee, J., Kim, N., & Su, M. (2021). Immigrant and international college students’ learning gaps: Improving academic and sociocultural readiness for career and graduate/professional education. International Journal of Educational Research Open, 2, 100047. https://doi.org/10.1016/j.ijedro.2021.100047
Liu, C., Gong, B., Wu, H., Huang, H., & Zhao, H. (2025). Intelligent Coalbed Methane Drainage Optimization: A Deep Reinforcement Learning-Driven Life-Cycle Strategy. Energy and AI, 100598. https://doi.org/10.1016/j.egyai.2025.100598
Maier, U., & Klotz, C. (2025). Students ignore their mistakes: Elaborated error feedback processing in a digital learning system. Contemporary Educational Psychology, 102395. https://doi.org/10.1016/j.cedpsych.2025.102395
Maisyaroh, M., Juharyanto, J., Wiyono, B. B., Nawi, A. M., Adha, M. A., & Lesmana, I. (2024). Unveiling the nexus of leadership, culture, learning independence, passion trend-based learning, and teacher creativity in shaping digital student skills. Social Sciences & Humanities Open, 9, 100884. https://doi.org/10.1016/j.ssaho.2024.100884
Marselina, S., Rukmini, A., Judijanto, L., Nurlaila, L., & Apriliyani, E. S. (2025). The Digital Literacy and Students’ Analytical Abilities: Challenges and Solutions in the Implementation of Technology Based Learning. TOFEDU: The Future of Education Journal, 4(8), 4082–4090. https://doi.org/10.61445/tofedu.v4i8.1029
Mufidah, A., & Putranta, H. (2024). Identification of digital literacy skills on critical thinking of physics education students. Jurnal Cerdik: Jurnal Pendidikan dan Pengajaran, 4(1), 46-62. https://jurnalcerdik.ub.ac.id/index.php/jurnalcerdik/article/view/413
Purser, R. E., & Milillo, J. (2015). Mindfulness revisited: A Buddhist-based conceptualization. Journal of Management Inquiry, 24(1), 3-24. https://doi.org/10.1177/1056492614532315
Rahmatullah, M. I. (2019). Pengembangan konsep pembelajaran literasi digital berbasis media e-learning pada mata pelajaran PJOK di SMA Kota Yogyakarta. Journal Of Sport Education (JOPE), 1(2), 56. https://doi.org/10.31258/jope.1.2.56-65
Shen, Y., Spencer, D., Tagsold, J., & Kim, H. (2025). Integrating cognition, self-regulation, motivation, and metacognition: a framework of post-pandemic flipped classroom design. Educational technology research and development, 1-37. https://link.springer.com/article/10.1007/s11423-025-10485-y
Shi, Y. R., Sin, K. F. K., & Wang, Y. Q. (2025). Teacher professional development of digital pedagogy for inclusive education in post-pandemic era: Effects on teacher competence, self-efficacy, and work well-being. Teaching and Teacher Education, 168, 105230. https://doi.org/10.1016/j.tate.2025.105230
Song, Y., Lv, S., Wang, M., Wang, Z., & Dong, W. (2025). The Impact of Digital Learning Competence on the Academic Achievement of Undergraduate Students. Behavioral Sciences, 15(7), 840. https://doi.org/10.3390/bs15070840
Sweeney, A., Burke, J., & Meehan, T. (2025). The impact of mindful pedagogy on creativity in higher education students, a systematic review. International Journal of Educational Research Open, 9, 100504. https://doi.org/10.1016/j.ijedro.2025.100504
Thornblad, T. A., Ewals, L. J., Nederend, J., Luyer, M. D., De With, P. H., & van der Sommen, F. (2025). Clinical insights to improve medical deep learning design: a comprehensive review of methods and benefits. Computers in Biology and Medicine, 196, 110780. https://doi.org/10.1016/j.compbiomed.2025.110780
Tondeur, J., Scherer, R., Siddiq, F., & Baran, E. (2020). Enhancing pre-service teachers’ technological pedagogical content knowledge (TPACK): A mixed-method study. Educational Technology Research and Development, 68(1), 319-343. https://doi.org/10.1111/bjet.12748
Tran, D. K., Wickstrøm, K., & Kampffmeyer, M. (2025). WOODWORK: A deep-learning based framework for woodpecker damage detection in powerline inspection. International Journal of Electrical Power & Energy Systems, 171, 110900. https://doi.org/10.1016/j.ijepes.2025.110900
Yu, B., & Wang, W. (2025). Using digital storytelling to promote language learning, digital skills and digital collaboration among English pre-service teachers. System, 129, 103577. https://doi.org/10.1016/j.system.2024.103577
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 EDUTECH : Jurnal Inovasi Pendidikan Berbantuan Teknologi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.













