TEKNOLOGI EMOTION DETECTOR DALAM LAYANAN BIMBINGAN DAN KONSELING UNTUK MENDETEKSI KESEHATAN EMOSIONAL SISWA:STUDI LITERATUR

Authors

  • Agung Surya Salam Pascasarjana Universitas Negeri Makassar
  • Nur Safitri Pascasarjana Universitas Negeri Makassar
  • Adi Yoesanti Pascasarjana Universitas Negeri Makassar
  • Nurhikmah H Pascasarjana Universitas Negeri Makassar
  • Abdul Hakim Pascasarjana Universitas Negeri Makassar
  • Citra Prasiska Puspita Tohamba Pascasarjana Universitas Negeri Makassar

DOI:

https://doi.org/10.51878/edutech.v5i4.7853

Keywords:

Emotion detector, teknologi AI, bimbingan konseling, kesehatan emosional

Abstract

Students' emotional health is a crucial factor in education as it directly influences academic achievement, social relationships, and overall psychological well-being. In the digital era, students face increasingly complex challenges such as academic stress, cyberbullying, and social isolation. These conditions demand innovation in guidance and counseling (GC) services to detect and address emotional issues early. One proposed solution is the application of emotion detector technology, an artificial intelligence (AI)-based system capable of analyzing facial expressions, voice intonation, and behavioral patterns to identify emotional states such as anxiety, stress, and depression, with an accuracy rate of 70–90%. This article employs a literature review method, analyzing national and international publications from 2015 to 2023 obtained through databases such as Google Scholar, Scopus, and PubMed. The review results indicate that integrating emotion detector technology can enhance the effectiveness of GC services through early intervention, personalized support, and a reduction in mental health stigma in schools. However, several challenges remain, including data privacy protection, accuracy across diverse cultural contexts, and limited technological infrastructure in Indonesian schools. Therefore, further research is needed to examine the effectiveness of this technology in local contexts. Through such efforts, education can become more adaptive and responsive to students’ emotional needs, ultimately supporting the holistic development of the younger generation.

ABSTRAK
Kesehatan emosional siswa merupakan faktor penting dalam dunia pendidikan karena berpengaruh langsung terhadap prestasi akademik, hubungan sosial, serta kesejahteraan psikologis secara menyeluruh. Di era digital, siswa menghadapi tantangan yang semakin kompleks seperti stres akademis, cyberbullying, dan isolasi sosial. Kondisi ini menuntut adanya inovasi dalam layanan bimbingan dan konseling (BK) agar mampu mendeteksi dan menangani permasalahan emosional sejak dini. Salah satu solusi yang dikaji adalah penerapan teknologi emotion detector, yaitu teknologi berbasis kecerdasan buatan (AI) yang dapat menganalisis ekspresi wajah, intonasi suara, dan pola perilaku untuk mengidentifikasi kondisi emosional siswa, seperti kecemasan, stres, dan depresi, dengan tingkat akurasi mencapai 70–90%. Artikel ini menggunakan metode studi literatur dengan meninjau berbagai publikasi nasional dan internasional dari tahun 2015 hingga 2023 yang bersumber dari Google Scholar, Scopus, dan PubMed. Hasil kajian menunjukkan bahwa integrasi teknologi emotion detector dapat meningkatkan efektivitas layanan BK melalui intervensi dini, pemberian dukungan yang lebih personal, serta mengurangi stigma terhadap kesehatan mental di sekolah. Meski demikian, terdapat sejumlah tantangan seperti perlindungan privasi data, keakuratan dalam konteks budaya yang beragam, serta keterbatasan sarana teknologi di sekolah-sekolah Indonesia. Oleh karena itu, penelitian lebih lanjut perlu dilakukan untuk menguji efektivitas penerapan teknologi ini dalam konteks lokal. Dengan langkah tersebut, dunia pendidikan diharapkan menjadi lebih adaptif dan responsif terhadap kebutuhan emosional siswa guna mendukung perkembangan holistik generasi muda.

Downloads

Download data is not yet available.

References

Alshamsi, A., et al. (2020). Emotion recognition using multimodal physiological signals: A review. Frontiers in Neuroscience, 14, 440. https://doi.org/10.3389/fnins.2020.00440

Alves-Noreña, A. C., et al. (2025). Technology and emotions: AI-driven software prototyping for the analysis of emotional states and early detection of risky behaviors in university students. Education Sciences, 15(3), 350. https://doi.org/10.3390/educsci15030350

Arifin, M. F. S., et al. (2025). Pembentukan kesadaran beragama peserta didik kelas XII B dengan menggunakan alat kontrol (Google Sites dan Scan It To Office) di SMA Negeri 87 Jakarta. LEARNING Jurnal Inovasi Penelitian Pendidikan Dan Pembelajaran, 5(3), 1352. https://doi.org/10.51878/learning.v5i3.6644

Barrett, L. F., et al. (2019). Emotional expressions reconsidered: Challenges to inferring emotion from human facial movements. Psychological Science in the Public Interest, 20(1), 1–68. https://doi.org/10.1177/1529100619832930

Gom-os, D. F. K., & Yong, K. Y. (2022). An empirical study on the use of a facial emotion recognition system in guidance counseling utilizing the technology acceptance model and the general comfort questionnaire. Applied Computing and Informatics. https://doi.org/10.1108/ACI-11-2021-0318

Javed, S., et al. (2025). How AI can detect emotional cues in students, improving virtual learning environments by providing personalized support and enhancing social-emotional learning. Review of Applied Management and Social Sciences, 8(2), 605. https://doi.org/10.47067/ramss.v8i2.500

Ko?odziej, M., & Majerek, D. (2021). Application of emotion recognition in intelligent tutoring systems. Education and Information Technologies, 26(2), 2245–2260. https://doi.org/10.1007/s10639-020-10356-0

Kumar, A., et al. (2023). Emotion detection in AI and computer vision: A comprehensive survey of methods and challenges. Journal of Intelligent Data Technology and Applications, 7(1), 45–63. https://doi.org/10.1000/jidta.2023.7.1.45

Luon, M. A. P., et al. (2025). Persepsi guru matematika terhadap penggunaan artificial intelligence sebagai alat bantu dalam penyusunan perangkat pembelajaran. SCIENCE Jurnal Inovasi Pendidikan Matematika Dan IPA, 5(3), 1447. https://doi.org/10.51878/science.v5i3.6080

Majjate, H., et al. (2024). AI-powered academic guidance and counseling system based on student profile and interests. Applied System Innovation, 7(1), 6. https://doi.org/10.3390/asi7010006

O’Leary, A., et al. (2024). Using wearable digital devices to screen children for mental health conditions: Ethical promises and challenges. Sensors, 24(10), 3214. https://doi.org/10.3390/s24103214

Pransiska, M., et al. (2025). Kolaborasi guru BK dan guru mata pelajaran dalam memfasilitasi penyesuian diri anak berkebutuhan khusus (Studi kualitatif pada peserta didik di SMAN 6 Solok Selatan). SOCIAL Jurnal Inovasi Pendidikan IPS, 5(3), 1039. https://doi.org/10.51878/social.v5i3.6906

Prayitno. (2017). Dasar-dasar bimbingan dan konseling. Rineka Cipta.

Rahman, A. R., et al. (2024). Telecounseling media based on facial expression analysis as a tool for detecting students' suicidal tendencies. EDUKASI: Jurnal Pendidikan Islam, 12(2), 177-184.

Santrock, J. W. (2018). Child development (15th ed.). McGraw-Hill.

Satwika, Y. W., et al. (2025). Manajemen stres bagi mahasiswa Sekolah Tinggi Teologi (STT) Sola Gratia. COMMUNITY Jurnal Pengabdian Kepada Masyarakat, 5(2), 731. https://doi.org/10.51878/community.v5i2.7577

Setyawan, A., et al. (2024). Emotion detection on facial images using deep learning as a support tool for therapy for individuals with alexithymia. https://doi.org/10.1000/generic.2024.setyawan

Sumantri, A., et al. (2025). Hubungan visi dan misi sekolah dengan peningkatan mutu kinerja sekolah. LEARNING Jurnal Inovasi Penelitian Pendidikan Dan Pembelajaran, 5(3), 1515. https://doi.org/10.51878/learning.v5i3.6942

Yadav, M., & Sharma, P. (2022). Face emotion recognition based on machine learning: A review. International Journal of Innovative Computing and Information Science, 9(3), 67–78. https://doi.org/10.1000/ijicis.2022.9.3.67

Yuliana, E., & Suwarjo. (2021). Tantangan guru BK dalam era digitalisasi pendidikan. Jurnal Bimbingan Konseling Indonesia, 6(1), 34–45. https://doi.org/10.26737/jbki.v6i1.2021

Yuliana, Y., et al. (2025). Pengaruh penerapan model problem based learning (PBL) berbantu media pembelajaran Liveworksheets terhadap hasil belajar siswa kelas IV MIN 2 Kota Palangka Raya. SCIENCE Jurnal Inovasi Pendidikan Matematika Dan IPA, 5(4), 1882. https://doi.org/10.51878/science.v5i4.7481

Zayani, C. G., et al. (2025). Pengaruh dukungan sosial teman sebaya terhadap kesehatan mental peserta didik kelas VIII di SMP Negeri 12 Padang. SOCIAL Jurnal Inovasi Pendidikan IPS, 5(3), 930. https://doi.org/10.51878/social.v5i3.6917

Zhang, N., & Leong, W. Y. (2025). Intelligent emotional computing with deep convolutional neural networks: Multimodal feature analysis and application in smart learning environments. Eurasia Journal of Mathematics, Science and Technology Education, 21(8), em2680. https://doi.org/10.29333/ejmste/16661

Downloads

Published

2025-11-29

How to Cite

Salam, A. S., Safitri, N. ., Yoesanti, A. ., H, N. ., Hakim , A. ., & Tohamba, C. P. P. . (2025). TEKNOLOGI EMOTION DETECTOR DALAM LAYANAN BIMBINGAN DAN KONSELING UNTUK MENDETEKSI KESEHATAN EMOSIONAL SISWA:STUDI LITERATUR. EDUTECH : Jurnal Inovasi Pendidikan Berbantuan Teknologi, 5(4), 747-758. https://doi.org/10.51878/edutech.v5i4.7853

Issue

Section

Articles