SENSITIVITY OF CRU AND ERA5 PRECIPITATION DATASETS TO ENSO FORCINGS FOR INDONESIAN CLIMATE DURING 1970-2024
DOI:
https://doi.org/10.51878/cendekia.v6i1.8193Keywords:
Precipitation, Sensitivity, ENSO forcings, El Niño, La NiñaAbstract
Observational precipitation datasets for countries around the globe as part of climate parameters are available in time-series acquired from ground-based and satellite-based monitoring stations. This study reports two datasets for rainfall variability in Indonesia during 1970–2024 provided by Climatic Research Unit (CRU) University of East Anglia, UK for the ground-based data and ERA5, the fifth version of European Centre for Medium-Range Weather Forecasts (ECMWF) for the satellite-based measurements. The main aim of the study was to examine sensitivity of both datasets to climatic ENSO forcings, determining how strong El Niño and La Niña events influenced Indonesian rainfall variability. The methods in this study included accessing reliable sites for collecting and processing Indonesian precipitation datasets of different techniques and sea surface temperature data during observations. The results and corresponding discussions are summarised as follows. While El Niño and La Niña events indicate asymmetric behaviours, the ENSO forcings affect the precipitation datasets derived from two measurement techniques. Firstly, the datasets from CRU and ERA5 are coincident with years of extreme ENSO events. Secondly, despite the apparent difference in magnitude between observed rainfall intensities, the CRU and ERA5 datasets are found to be self-consistent in describing natural phenomena. Thirdly, with a higher resolution ERA5 datasets are more sensitive to the ENSO forcings than CRU datasets when applied to climatic conditions in Indonesia.
ABSTRAK
Data observasi presipitasi sebagai bagian dari parameter iklim untuk wilayah teritorial se dunia dapat diperoleh dari stasiun monitor di darat dan di udara. Studi ini melaporkan dua jenis data presipitasi di Indonesia antara 1970–2024 yang disediakan oleh Climatic Research Unit (CRU), University of East Anglia, UK untuk stasiun monitor di darat dan ERA5, generasi kelima dari European Centre for Medium-Range Weather Forecasts (ECMWF) untuk pengukuran satelit. Tujuan penelitian ini adalah membandingkan sensitivitas kedua jenis data presipitasi terhadap pengaruh ENSO dengan cara menentukan seberapa kuat El Niño dan La Niña memengaruhi variabilitas intensitas curah hujan di Indonesia. Metode yang digunakan dalam penelitian ini adalah mengakses laman yang kredibel untuk pengumpulan dan pemrosesan data presipitasi di Indonesia dan temperatur muka laut selama observasi berlangsung. Hasil-hasil penelitian dan pembahasan terkait adalah sebagai berikut. El Niño and La Niña menunjukkan sifat asimetrik, dimana kedua fenomena alam tersebut berpengaruh terhadap data presipitasi di Indonesia yang diperoleh dari dua teknik pengukuran. Pertama, data presipitasi CRU dan ERA5 sesuai dengan tahun-tahun kejadian ENSO ekstrem. Kedua, meskipun terdapat perbedaan signifikan antara intensitas curah hujan yang dilaporkan oleh CRU dan ERA5, data presipitasi CRU dan ERA5 bersifat self-consistent dalam mendeskripsikan fenomena alam. Ketiga, dengan tingkat resolusi yang lebih tinggi data presipitasi ERA5 terbukti lebih sensitif terhadap pengaruh ENSO ekstrem daripada data presipitasi CRU untuk kondisi iklim di Indonesia.
References
Ariska, M., Suhadi, Supari, Irfan, M., & Iskandar, I. (2024). Spatio-temporal variations of Indonesian rainfall and their links to Indo-Pacific modes. Atmosphere 15(9), 1036. https://doi.org/10.3390/atmos15091036
Chen, H., Shi, J., Jin, Y., Geng, T., Li, C., & Zhang, X. (2021). Warm and cold episodes in western Pacific warm pool and their linkage with ENSO asymmetry and diversity. Journal of Geophysical Research: Oceans, 126(12). https://doi.org/10.1029/2021JC017287
Ehsan, M. A., L’Heureux, M. L., Tippett, M. K., Robertson, A. W., & Turmelle, J. (2024). Real-time ENSO forecast skill evaluated over the last two decades, with focus on the onset of ENSO events. Climate and Atmospheric Science, 7(301). https://doi.org/10.1038/s41612-024-00845-5
Freund, M. B., Brown, J. R., Marshall, A. G., Tozer, C. R., Henley, B. J., Risbey, J. S., Ramesh, N., Lieber, R., & Sharmila, S. (2024). Interannual ENSO diversity, transitions, and projected changes in observations and climate models. Environmental Research Letters, 19(11), 114005. https://doi.org/10.1088/1748-9326/ad78db
Geng, T., Cai, W., Wu, L., & Yang, Y. (2019). Atmospheric convection dominates genesis of ENSO asymmetry. Geophysical Research Letters, 46(14), 8387–8396. https://doi.org/10.1029/2019GL083213
Glantz, M. H., & Ramirez, I. J. (2020). Reviewing the Oceanic Niño Index (ONI) to enhance societal readiness for El Niño’s impacts. International Journal of Disaster Risk Science, 11, 394–403. https://doi.org/10.1007/s13753-020-00275-w
Glantz, M. H., & Ramírez, I. J. (2025). Enhancing societal value of early warning early action and anticipatory action frameworks using NOAA’s Oceanic Niño Index. International Journal of Disaster Risk Science, 16, 171–181. https://doi.org/10.1007/s13753-025-00625-6
Hanifa, R., & Wiratmo, J. (2024). ENSO and IOD influence on extreme rainfall in Indonesia: Historical and future analysis. Agromet, 38(2), 78–87. https://doi.org/10.29244/j.agromet.38.2.78-87
Hendrawan, V. S. A., Rahardjo, A. P., Mawandha, H. G., Aldrian, E., Muhari, A., & Komori, D. (2025). Review article: Past and future climate–related hazards in Indonesia, EGU sphere [preprint]. https://doi.org/10.5194/egusphere-2025-584
Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H., Menne, M. J., Smith, T. M., Vose, R. S., & Zhang, H-M. (2017). Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. Journal of Climate, 30(20), 8179–8205. https://doi.org/10.1175/JCLI-D-16-0836.1
Iwakiri, T., & Watanabe, M. (2021). Mechanisms linking multi-year La Niña with preceding strong El Niño. Scientific Reports, 11(1), 17465. https://doi:10.1038/s41598-021-96056-6
Kozar, M. E., Mann, M. E., Camargo, S. J., Kossin, J. P., & Evans, J. L. (2012). Stratified statistical models of North Atlantic basin-wide and regional tropical cyclone counts. Journal of Geophysical Research, 117(D18103) https://doi.org/10.1029/2011JD017170
Kurniadi, A., Weller, E., Salmond, J., & Aldrian, E. (2023). Future projections of extreme rainfall events in Indonesia. International Journal of Climatology, 44(1), 160–182. https://doi.org/10.1002/joc.8321
Lee, H. S. (2015). General rainfall patterns in Indonesia and the potential impacts of local seas on rainfall intensity. Water, 7(4), 1751–1768. https://doi.org/10.3390/w7041751
Le, T., & Bae, D?H. (2019). Causal links on interannual timescale between ENSO and the IOD in CMIP5 future simulations. Geophysical Research Letters, 46(5), 2820–2828. https://doi.org/10.1029/2018GL081633
Li, A., Zhang, Y., Hong, M., Shi, J., & Wang, J. (2023). Relative importance of ENSO and IOD on interannual variability of Indonesian Throughflow transport. Frontiers in Marine Science, 10, 1182255. https://doi.org/10.3389/fmars.2023.1182255
Liu, T., Song, X., Tang, Y., Sen, Z., & Tan, X. (2022). ENSO predictability over the past 137 years based on a CESM ensemble prediction system. Journal of Climate, 35(2), 763–777. http://dx.doi.org/10.1175/JCLI-D-21-0450.1
McPhaden, M. J., Santoso, A., & Cai, W. (Eds). (2020). El Niño–Southern Oscillation in a changing climate. Geophysical Monograph Series: American Geophysical Union (AGU). https://doi.org/10.1002/9781119548164
Parra, R. R. T., Usta, D. F. B., Díaz, L. J. O., & Moreno-Ardila, M. P. (2024). Eastern tropical Pacific atmospheric and oceanic projected changes based on CMIP6 models. Progress in Oceanography, 229(2),103362. https://doi.org/10.1016/j.pocean.2024.103362
Santoso, A., England, M. H., Kajtar, J. B., & Cai, W. (2022). Indonesian Throughflow variability and linkage to ENSO and IOD in an ensemble of CMIP5 models. Journal of Climate, 35(10), 3161–3178. https://doi.org/10.1175/JCLI-D-21-0485.1
Sayol, J-M., Vásquez, L. M., Valencia, J.-L., Linero-Cueto, J. R., García-García, D., Vigo, I., & Orfila, A. (2022). Extension and application of an observation-based local climate index aimed to anticipate the impact of El Niño-Southern Oscillation events on Columbia. International Journal of Climatology, 42(11), 5403–5429. https://doi.org/10.1002/joc.7540
Shikwambana, L., Kganyago, M., & Xulu, S. (2022). Analysis of wildfires and associated emissions during the recent strong ENSO phases in Southern Africa using multi-source remotely-derived products, Geocarto International, 37(27), 16654-16670, https://doi.org/10.1080/10106049.2022.2113449
Song, J., Zhang, Q., Wang, G., Sun, S., Singh, V. P., & Wu, W. (2023). Summertime ENSO potentially amplifies rainstorm and flood risk in the lower Yellow River basin, China. Journal of Hydrology: Regional Studies, 50, 101576, https://doi.org/10.1016/j.ejrh.2023.101576
Timmermann, A., An, S-I., Kug, J-S., Jin, F-F., Cai, W., Capotondi, A. et al. (2018). El Niño Southern Oscillation complexity. Nature, 559(7715), 535–545. https://doi.org/10.1038/s41586-018-0252-6
Torres, R. R., Giraldo, E., Muñoz, C., Caicedo, A., Hernández-Carrasco, I., & Orfila, A. (2023) Seasonal and El Niño–Southern Oscillation-related ocean variability in the Panama Bight. Ocean Science, 19(3), 685–701. https://doi.org/10.5194/os-19-685-2023















